
AD-A240 745
~IIIIII I II11111 IITechiiic. Report

930

An Efficient A* Stack Decoder Algorithm
for Continuous Speech Recognition with a

Stochastic Language Model

DTIC D.B. Paul
SEL.ECTE

SEP 2 6 1991

D
18 July 1991

Lincoln Laboratory
MASSACHUtSETTS INSTITUTE OF TECHNOLOGY

LEXiuNTON. MIASSACHUSETTS

Prepared for the Defense Advanced Research Projects Agency
under Air Force Contract F19628-90-C-0002.

Approved for public release: distribution is unlimited.

91-11492I~t I' M q ' 11t l'1, '
:11 ~ ~ ~ ~ ~ ~ 4 iil II 1I1e I4 - ;) }. '

This report is beed on studies performed at Lincoln Laboratory, a center for

research operated by Massachusetts Institute of Technology. The work was sponsored
by the Tactical Technology Office of the Defense Advanced Research Projects
Agency under Air Force Contract F19628-90-C-0002 (DARPA Order Number 3391).

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESD Public Affairs Office has reviewed this report, and
it is releasable to the National Technical Information
Service, where it will he available to the general nublie.

including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Hugh L. Southall. Lt. Col.. USAF
Chief. ESD Lincoln Laboratory Project Office

Non-Lincoln Recipients

PLEASE DO NOT RETURN

,'ermission is given to destroy this document
when it is no longer needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

AN EFFICIENT A* STACK DECODER ALGORITHM FOR
CONTINUOUS SPEECH RECOGNITION WITH A

STOCHASTIC LANGUAGE MODEL

1). B. P.4 IL

Group, 24

Fo~

TEFCIINI: kl. REPORT931

18~ ~ ~ JUIA.99

Approved for public release. distribution is unlimited.

LEXINGTON MASSACHUSETTS

ABSTRACT

The stack decoder is an attractive algorithm for controlling the acoustic and
language model matching in a continuous speech recognizer. It implements a best-
first tree search to find the best match to both the language model and the observed
speech. A previous paper described a near-optimal admissible Viterbi A* search
algorithm for use with non-cross-word acoustic models and no-grammar language
models [1]. This report extends this algorithm to include unigram language models
and describes a modified version of the algorithm which includes the full (forward)
decoder, cross-word acoustic models and longer-span language models. The resul-
tant algorithm is not admissible, but has been demonstrated to be very efficient.

.°Il

TABLE OF CONTENTS

Abstract iii

1. INTRODUCTION

2. THE BASIC STACK DECODER 3

3. THE A* STACK CRITERION 5

4. THE NEAR-OPTIMAL A* STACK DECODER FOR RECOGNITION WITH A
NO-GRAMMAR OR UNIGRAM LANGUAGE MODEL 7

5. AN EFFICIENT STACK DECODER ALGORITHM FOR USE WITH A MULTIPLE-
WORD SPAN LANGUAGE MODEL 9

6. DISCUSSION AND CONCLUSIONS 11

APPENDIX A - DERIVATION OF THE A* CRITERION USED IN EQUATION (3) 13

REFERENCES 15

m V

1. INTRODUCTION

Speech recognition may be treated as a tree network search problem. As one proceeds from
the root toward the leaves, the branches leaving each iunction represent the set of words that may be
appended to the current partial sentence. Each of the branches leaving a junction has a probability
and each word has a likelihood of being produced by the observed acoustic data. The recognition
problem is to identify the most likely path (word sequence, W*) from the root (beginning of the
sentence) to a leaf (end of the sentence) taking into account the junction probabilities (the stochastic
language model) p(W) and the acoustic match (including time alignment) p(O[W) given that path
[21

W =argmax p(OIW)p(W) (1)

where 0 is the acoustic observation sequence and W is a word sequence. Similarly, for no-grammar
language model recognition, the problem is to identify the most likely word sequence given only
the acoustic data

W* =argmax p(OIW). (2)
{ '}

By Bayes rule. likelihoods can be substituted for the probabilities in either of the above equations
without changing the recognized sentence W ° .

This report is concerned with the network search problem and therefore correct recognition is
defined as outputting the most likely sentence W given the language model, the acoustic models,
and the observed acoustic data. If the most likely sentence is not the one spoken, it is a modeling
error-not a search error. This paper will assume for simplicity that an isolated sentence is the
object to be recognized. (The algorithm extends trivially to recognize continuous input.)

This report will assume a stochastic acoustic model, such as a hidden Markov model (HMM)
[2,3,4], and a stochastic language model [5]. An accept-reject language model will also work-its
output log-likelihood is either zero or minus infinity.

This report will initially describe the basic stack decoder and the A* scoring criterion. It
will then describe a near-optimal admissible search algorithm for using the (Viterbi) stack decoder

to perform continuous speech recognition (CSR) with a no-grammar/unigram language model.
Finally, it will show how to modify this algorithm to produce an efficient stack decoder that includes
the full (forward) decoder, cross-word acoustic models, and longer-span language models.

2. THE BASIC STACK DECODER

The stack decoder [6], as used in speech, is an implementation of a best-first tree search. The
basic operation of a sentence decoder is as follows [2,7]:

1. Initialize the stack with a null theory.

2. Pop the best (highest scoring) theory off the stack.

3. if(erd-of-%ntence) output the sentence and terminate.

4. Perform acoustic and language-model fast matches to obtain a short list of candidate
word extensions of the theory.

5. For each word on the candidate list:

(a) Perform acoustic and language-model detailed matches to compute the new
theory output log-likelihood.

i. if(not end-of-sentence) insert into the stack.

ii. if(end-of-sentence) insert into the stack with end-of-sentence flag = TRUE.

6. Go to 2.

The fast matches [7,8] are computationally cheap methods for reducing the number of word exten-
sions that must be checked by the more accurate, but computationally expensive detailed matches. 1

(The fast matches may also be considered a predictive component for the detailed matches.) Top-N
(N-best) mode is achieved by delaying termination until N sentences have been output.

The stack itself is just a sorted list that supports the following operations: pop the best entry
and insert new entries according to their scores. The following items must be contained in the ith
stack entry:

1. A stack score: StSc,

2. A reference time: t-refi

3. A word history (path or theory identification)

4. An output log-likelihood distribution: Li(t)

5. An end-of-sentence flag

'The following discussion concerns the basic stack decoder and therefore it will be assumed that the
correct word will always be on the fast match list. This can be guaranteed by the scheme outlined
in Bahl et al [7]. All of the theoretical results contained in this report assume no fast matches.

3

The stack score and the reference time are used to sort the stack. Since the time of exiting the

last word of the theory cannot be uniquely determined without knowing the next word, the output

log-likelihood as a function of time must be contained in each entry. This distribution is the input

to the next word model. The end-of-sentence flag identifies the theories that are candidates to end

the sentence.

4

3. THE A* STACK CRITERION

A key issue in the stack decoder is deciding which theory should be popped from the stock
to be extended. This is decided by the stack score and the refeimcc time. (All scores used here
are log-likelihoods or log-probabilities.) If one uses the raw log-probabilities as the stack score, a
uniform search [9] will result. This search will result in a prohibitive amount of computation and
a very large stack because the log-probabilities decrease rapidly with path length and thus short
paths will be "carried along" by the better paths. A better scoring criterion is the A * criterion
[9]. The (near-optimal) A* criterion used here is the difference between the actual log-likelihood of
reaching a point in time on a path and an upper bound on the log-likelihood of any path reaching
that point in time:

Ai(t) = Li(t) - ubL(t) (3)

where Ai(t) is the A* scoring function, Li(t) is the output log-likelihood, t denotes time, i denotes
the path (tree branch or left sentence fragment) and ubL(t) is an upper bound on Li(t). (This
criterion is similar to the exact A* criterion stated in Nilsson [9] except that, unlike the exact A*
criterion, it can be computed at negligible cost without using data from the future. See Appendix
A for a derivation.) In order to sort the stack entries, it is necessary to reduce the Ai(t) to a single
number (the stack sci,c):

StSc, =max A,(t). (4)t

It is also convenient at this point to define the minimum time that satisfies Equation (4):

t-min =argmin (StScj = Aj(t)). (5)
t

Ideally, ubL(t) would be the least upper bound on Li(t): lubL(t). In general, the closer ubL(t) is
to lubL(t), the less computation. If ubL(t) becomes less than lubL(t). longer paths will be favored
excessively and the first output sentence may not have the highest log-likelihood, i.e., a search error
may occur. (Note that ubL(t) is constant for any t and therefore does not affect the relative scores
of the paths at any fixed time-it only affects the comparison of paths of differing lengths and the
resultant order of path expansion.)

The stack search will be admissible [9] if the following conditions are met:

ubL(t) > lubL(t) (6)

5

and

ubL(t 2) - lubL(t 2) _> ubL(ti) - lubL(ti) t2 > tl (7)

and it will be near-optimal 19] ir the sense that a near-minimum number of theories will need to
be expanded for an admissible search if

ubL(t) = lubL(t). (8)

The additional condition stated in Equation (7) over those found in Nilsson [9] is sufficient (but
not necessary) because the word acoustic models can "jump" over parts of the bound and therefore
a locally poor bound can block the correct theory while passing those that are able to jump over
the poor region.

A basic problem is obtaining a good estimate of ubL(t) in a time-asynchronous decoder.
(Note that lubLatate(t) over the states is easily computed in a time-synchronous decoder and that
Aatate(t) is the value compared to the pruning threshold in a beam search [10].) One simple estimate
of lubL(t) is

lubL(t) = -at. (9)

where a is some constant greater than zero. This approach attempts to cancel out the average

log-likelihood per time step. If a is too large, it will underestimate the bound and risk recognition
errors. If a is small enough. the search will be admissible but will require an excessive amount

of computation. (In fact, a = 0 is the uniform search mentioned above.) Unfortunately no single
value of a is optimum for all sentences or all parts of a single sentence. Thus a conservative value
must be chosen and the computation will be excessive.

This estimate of the bound is not useful for controlling the stack decoder, but it is adequate to
estimate the most-probable theory exit time. Given an appropriate value for a, Ai(t) will exhibit
a peak whose location is an estimate of the most-probable exit time of the theory. (This stack

decoder only implements the forward decoder-findin, the exact most-probable exit time requires
information from the decode of some amount of the remainder of the sentence.) Therefore the
estimated exit time is

Lexiti =argmax Li(t) - at. (10)
t

6

4. THE NEAR-OPTIMAL A* STACK DECODER FOR RECOGNITION
WITH A NO-GRAMMAR OR UNIGRAM LANGUAGE MODEL

It is not possible to compute the exact least upper bound on the theory likelihoods without
first performing the recognition. It is, however, possible to compute the least-upper-bound-so-far
(lubsf) on the likelihoods that have already been computed, which requires negligible computation
and is to be sufficient to perform the near-optimal A* search. This creates two problems:

1. Since lubL(t) = lubsfL(t) can change as the theories are evaluated, the stack order
can also change.

2. A degeneracy in determining the best path by StSc alone can occui beceuse lubsfL(t)
can equal L,(t) for more than one i (path) at different times.

Problem 1 is easily cured by reevaluating the stack score StSc every time lubsfL(t) is updated
and reorganizing the stack. This 6 easily accomplished if the stack is stored as a heap [11].

Problem 2 occurs because different theories may dominate different parts of the current upper
bound. Thus all of these theories will i uve a score of zero. If the longest theory is extended, its
descendents will in turn dominate the longest part of the bound and will therefore be extended.
This will, of course, result in search errors because the shorter theories will never have a chance to
be extended. The cure is to extend the shortest theory (minimum Lmin) that has a stack score
equal to the best. If Lref, = Lmin,. this can be accomplished by performing a major sort on the
stack score StSc and a minor sort on the reference time Lref.

This guarantees that lubsfL(t) = lubL(t) for t < Lrefp (where p denotes the theory that is
about to be popped) and therefore the relevant part of the least-upper-bound has been computed
by the time that it is needed. Since the bound. at the time that it is need, is the least-upper-
bound. the search is admissible and near-optimal. Furthermore. when the first sentence is output.
the least-upper-bound-so-far will be the exact least-upper-bound. (This assumes no fast match was
used. An aggressive fast match can cause some portions of the lubsf to underestimate the exact
lub but this will not destroy the admissibility of the search as long as the correct word is on the
fast match list.)

A stack pruning threshold can be used to limit the stack size [1]. Any theory whose StSc falls
below the threshold can be deleted from the stack. This can be anplied on stack insertions and any
time the stack is reorganized. (Any update to the lubsf will only cause the StSc to be reduced, so
any theory that is pruned will not be accepted by the pruning threshold at a later portion of the
search.) This stack pruning threshold has little effect on the computational requirements and can
therefore be set very conservatively to essentially eliminate any chance that the correct theory will
be pruned.

In a time-synchronous (TS) no-grammar/unigram language model Viterbi decoder, all word
output likelihoods are compared and only the maximum is passed on as input to the word models.
Thus by comparison, only theories that dominate the lubsf need be retained on the stack and the

mm m mmmm m m mm m immm mllm mm m m

stack pruning threshold can be set to zero for top-i recognition. Since all stack scores, StSc, of all
heories popped from the stack will be zero until the first sentence is output, all theories popped

from the stack will be in reference time t-min order. (Of course, the stack pruning threshold must

be nonzero if a top-N list of sentences is desired.) For top-N recognition, this algorithm adaptively

raises the effective computational pruning threshold (which equals the current best StSc) by the

minimum required to produce N output sentences, subject to the limit placed by the stack pruning

threshold.

A time-synchronous Viterbi decoder must sometimes make an arbitrary decision when two

output likelihoods are equal, as can be caused by homonyms with identical acoustic models. The
top-i stack decoder will maintain both theories and, if all theories with likelihood equal to that

of the best theory are output. all homonym variations will be output. (This does not require a

nonzero stack pruning threshold because both theories will have the '.Ime likelihood.)

As is shown in Appendix A. this algorithm is near-optimal and admissible only for a Viterbi

decode using non-cross-word accustic models and a no-grammar or unigram language model In a
full (forward) decode, the output likelihood of one theory-which may later have a higher likelihood

due to summing of the probabilities of paths with different time alignments-may be "shadowed"
by the output likelihood of a second theory. The first theory would therefore not be expanded. In

general. the recognition accuracy of the Viterbi decoder is very similar to the accuracy of the full

decoder. (Small differences have been observed in some experiments.)

The long-span language model flaw in this algorithm can similarly cause shadowing of the

correct theory [12'. A language model czn improve the relative likelihood of a theory such that a
currently shadowed theory can dominate the bound after expansion. The above algorithm will not

allow the shadowed theory to be expanded until all better (higher stack score) theories have been

expanded. Such will occur if the system is run in top-N mode for a large enough N. Similarly an

end-of-sentence penalty can force a shadowed theory to be expanded. Unfortunately both of these

methods greatly increase the computation.

5. AN EFFICIENT STACK DECODER ALGORITHM FOR USE WITH A
MULTIPLE-WORD SPAN LANGUAGE MODEL

An efficient stack decoder algoritLim that can be used with cross-word acoustic models, the
full (forward) decoder, and longer-span (2) language models can be produced by two sim, le
changes:

1. Change the stack ordering to be a major sort on the reference time Lref (favoring
the lesser times) and a minor sort on the stack score StSc.

2. Use a non-zero stack pruning threshold.

The reference time Lref may also be changed from the minimum time that satisfies Equation (4)
used in the no-grammar/unigram language-model version to Lexit as defined in Equation (10).
(Either will work and both required similar amounts of computation in tests.) This algorithm
appears to be a simplification of one developed at IBM [13]. This algorithm is not admissible
because the correct theory can be pruned from the stack. The stack-pruning threshold now controls
the trade-off between the amount of computation and the probability of pruning the correct theory
by controlling the likelihood "depth" that will be searched. Unlike the previous algorithm, an
(unpruned) theory will not be shadowed because it will be extended when its reference time is
reached. This algorithm is quasi-time-synchronous because it, in effect, moves a time bound forward
and whenever this time bound becomes equal to the reference time of a theory, the theory is
expanded. (Descendants of the theory will generally have reference times farther forward in time.)

Note that the stack pruning threshold can also be set to zero for no-grammar/unigram lan-
guage model top-1 recognition with this algorithm. With a zero stack pruning threshold and
Lrefi = t-min,, it becomes equivalent to the near-optimal. admissible no-grammar/unigram lan-
guage model algorithm described above for top-i recognition. (While this algorithm can also
perform top-N recognition with or without a language model, it cannot be made equivalent to the
no-grammar/unigram language model version for top-N. Its pruning threshold is fixed and it will
only output theories whose relative likelihoods do not fall below the threshold.)

Given that this stack decoder algorithm has become quasi-time-synchronous, what are its
advantages over a time synchronous system?

1. It efficiently combines a long-span language model with the acoustic recognition into
the search.

2. It is an effective control strategy for simultaneous interpretation of large language
and acoustic models.

3. It has a tighter pruning threshold than a TS system because the threshold is applied
only to word end likelihoods after the language model has been applied rather than
to all states (which includes word internal states as well as states immediately before
and after application of the language model).

9

4. It may require fewer applications of the fast match since the fast match need only

be applied once per popped theory rather than once per time step. (This can be
guaranteed by an appropriately chosen fast match algorithm.)

5. It produces a top-N sentence output with only negligible modification to the algo-
rithm.

6. It can perform a Viterbi decode or an exact full decode without difficulty. The
likelihood "depth" of the search combined with the time-based major (stack) sort

allows pragmatically admissible operation of the full decode.

10

6. DISCUSSION AND CONCLUSIONS

The stack-search algorithms discussed in this report have been implemented in a prototype
that uses real speech input, but does not yet have all of the features of the Lincoln TS CSR
[14,15]. (The primary missing features are cross-word phonetic modeling and tied-mixtures.) The
prototype runs faster than does the TS system on the corresponding recognition task, frequently by
a significant factor. (In fairness, the TS system does not include a fast match.) Current experience
using the DARPA Resource Management Database [16] shows the required number of stack pops
and the stack size to be surprisingly small. In addition, the prototype includes a proposed CSR -
NL interface [17] and has been run with unigram, word-pair, bigran, and trigram language models
accessed through the interface without difficulty. (It has also been run using a no-grammar language
model, which, of course, does not require the interface.)

Methods for joining the acoustic matching of separate theories and caching of acoustic com-
putations to reduce the acoustic match computation were described in Paul [1]. These algorithms
were tested in a stack-decoder simulator (real stack decoder with simulated input data). These
accelerators have not been tested in the prototype stack decoder, but there is no reason in principle
why they could not be used.

A* search using the scoring function described by Nilsson [9] [Equation (A.1)] requires com-
puting the likelihood of the future data (h*(t) in Equation (A.4). The optimal A* decoder requires
exact evaluation of h*(t). which requires solving the top-1 recognition problem by some other
means, such as a reverse direction TS decoder [18], before the A* search can begin. The alterna-
tive described here substitutes a near-optimal scoring function that is derived from the A* search
and requires negligible additional computation over that required by the search itself. Since, as
noted above, the Lincoln top-1 TS decoder takes more CPU time than does the near-optimal stack
decoder. the near-optimal stack decoder algorithm appears to be the most efficient of the three
approaches for top-i recognition. In addition, the inadmissible version of the near-optimal stack
decoder can very easily integrate long-span language models into the search. However, if top-N
recognition is the goal. the optimal A* search may be preferred because, once the price is paid
for computing h*(t), the A* search can find the additional N-1 sentences very efficiently for no-
grammar/unigram language models [18]. A longer span language model would require computing
h*(t) [Equation (A.1)] rather h*(t) [Equation (A.4)], which would increase the cost of computing
the additional sentences.

Recently several other algorithms have been proposed for top-N recognition using A* search
[19,18,20 that use the Nilsson formulation of the scoring function. All of these approaches use a
reverse direction TS decoder to compute h*(t). (There are also some proposed non-A* methods
for recognizing the top-N sentences [21,22,23]. In general, the bidirectional approaches appear
to be more efficient than the unidirectional approaches.) These A* (and bidirectional) methods
must wait for the end of data (or a pseudo-end-of-data) to begin the A* (or the reverse direction)
pass. In contrast, because they do not need data beyond that necessary to extend the current

11

theory (this includes data up to Lref required to choose the current theory), the two stack decoder
formulations proposed here can proceed totally left-to-right as the input data becomes available
from the front end. The multiple-word-span language-model version of the stack search will output
all top-N theories with minimal delay following the end-of-data because all theories are pursued in
quasi-parallel or, in top-1 mode, it can output the partial sentence as soon as all unpruned theories
have a common partial history (initial word sequence). (A similar technique for continuous output
after a short delay from continuous input exists for TS decoders [24]).

One of the motivations for some of these other A* (and top-N) algorithms is as a method for
using weaker and cheaper initial acoustic and language models to produce a top-N sentence list for
later refinement by more detailed and expensive acoustic and/or language models, which now need
only consider a few theories. In contrast the algorithm proposed here integrates both the detailed
acoustic and language models directly in the stack search and therefore need only produce a top-1
output. It attempts to minimize the computation by applying all available information to constrain
the search. (The stack decoder as described here can, of course, also be used with weak and cheap
acoustic and/or language models to produce a top-N list for later processing.) The ultimate choice
between the two methods may be determined by the number of sentences required by the top-
N approaches and the relative computational costs of the various modules in each system. The
architectural simplicity of each system may also have some bearing.

The stack decoder has long shown promise for integrating long-span language models and
acoustic models into a single effective search which applies information from both sources into
controlling the search. It has not been used at many sites, primarily due to the difficulty of making
the search efficient. The algorithms described above will hopefully remove this barrier.

12

APPENDIX A
DERIVATION OF THE A* CRITERION USED IN EQUATION (3)

Nilsson [9] states the A* criterion (slightly rewritten to match the speech recognition problem)
as

fi(t) = gi(t) + h*(t) (A.1)

where fi(t) is the log-likelihood of a sentence with the partial theory i ending at time t, gi(t) is
the log-likelihood of partial theory i, and h*(t) is the log-likelihood of the best extension of theory
i from time t to the end of the data. (Nilsson uses costs which are interpreted here as negative
log-likelihoods. All descriptions here will use sign conventions appropriate for log-likelihoods to be
consistent with the rest of the paper.) The theory argmax (max fi(t)) is chosen as the next to be

i t
popped from the stack and expanded.

Equation (A.1) requires that the computation of the total likelihood of a sentence must be
separable into a beginning part and an end part separated by a single time, which disallows this
derivation for the full (forward) decoder because the full decoder does not have a unique transition
time between two words. Thus, the derivation is limited to a decoder which is Viterbi between
words. To allow the h*(t) terms to cancel in Equation (A.5), define h*(t) to be independent of the
theory

h'(t) = h'(t). (A.2)

Therefore Equation (A.1) can be rewritten as

fi(t) = gi(t) + h*(t). (A.3)

This requirement limits the derivation to non-cross-word acoustic model and no-grammar or uni-
gram language model recognition tasks.

Define

f*(t) = g*(t) + h*(t) (A.4)

for the best theory with a word transition at time t. The function f*(t) is slowly varying with global
maxima at the word transition points of the correct theory, at which points it equals the likelihood
of the correct theory. Specifically, it is maximum at t = 0 and t = T. (T is the end of data.) Since

13

gi(t) is an exact value (rather than a bound or estimate) for a tree search, g*(t) = lubgi(t) and
since h*(t) is not a function of i, f*(t) = lubfi(t).

Subtract Equation (A.4) from Equation (A.3) and define f,(t)

fi(t) = fi(t) - f(t) = g1(t) - g*(t). (A.5)

This is just Equation 3 in a different notation: gi(t) = Li(t) and g9(t) = ubL(t) (specifically
lubL(t)) and therefore /i(t) = Ai(t). Thus, if f*(t) were a constant, fi(t) would just be an offset
from fi(t) and the search would be optimum because argmax (max f,(t)) would always be equal

to argmax (max fi(t)). As noted earlier, f*(t) has maxima at word transition times of the correct
i

theory. Thus fi(t) is zero at word transition times on the correct theory and < 0 for all other
i and t. Thus the search is admissible because it can never block the correct theory by giving a
better score to an incorrect theory, but sub-optimal because it can cause incorrect theories to be
popped from the stack and be evaluated. Since the evaluation function "error" f*(t) - f*(O) is
slowly varying, the search is near-optimal.

Since the stack decoder treats each theory and all points on the likelihood distribution Li(t)
as a unit, each theory is evaluated at its optimum point: the max Ai(t) as defined in Equation 4,t
to give it its "best" chance and then, for efficiency, the likelihood of all points on the distribution

L,(t) are extended in one operation.

The fact that all StSci are zero until the first sentence is output and the tie is broken by
choosing the theory with the minimum reference time Lmin ensures that all candidate theories
that might alter lubsfLi(t < Lminp) have already been computed. Thus the lubsfL(t) = lubL(t)
for t < Lminp.

This derivation shows the stack criterion max StSci with a minimum Lminj tie-breaker to be

adequate to perform a near-optimal admissible A*-search Viterbi-recognition with a no-grammar
or unigram language-model using a stack decoder algorithm.

14

REFERENCES

1. D. B. Paul, "Algorithms for an optimal A* search and linearizing the search in the stack
decoder," Int. Conf. Acoust., Speech, and Signal Process. 1991, Toronto, Canada, May 14-17
(1991), pp. 693-696.
also
D. B. Paul, "Algorithms for an optimal A* search and linearizing the search in the stack
decoder," Prc. June 1990 DARPA Speech and Natural Language Workshop, San Mateo, CA:
Morgan Kauimann Publishers (1990), pp. 200-204.

2. L. R. Bahl, F. Jelinek, and R. L. Mercer, "A maximum likelihood approach to continuous
speech recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-5, 179-
190 (1983).

3. D. B. Paul, "Speech recognition using hidden Markov models," Lincoln Laboratory Journal,
Vol. 3, No. 1, pp. 41-62 (1990).

4. A. B. Poritz, "Hidden Markov models: A guided tour," Int. Conf. Acoust., Speech, and Signal
Process. 1988, April 11-14 (1988), pp. 7-13.

5. F. Jelinek. "Self-organized language modeling for speech recognition," Readings in Speech
Recognition, A. Weibel and K. F. Lee, eds., San Mateo, CA: Morgan Kaufmann Publishers
(1990), pp. 450-506.

6. F. Jelinek, "A fast sequential decoding algorithm using a stack," IBM J. Res. Develop., Vol.
13, 675-685 (1969).

7. L. Bahl. P. S. Gopalakrishnam, D. Kanevsky, D. Nahamoo, "Matrix fast match: A fast method
for identifying a short list of candidate words for decoding," Int. Conf. Acoust., Speech, and
Signal Process. 1989, Glasgow, Scotland, May 23-26 (1989), pp. 345-348.

8. L. S. Gillick and R. Roth, "A rapid match algorithm for continuous speech recognition," in
Proc. June 1990 DARPA Speech and Natural Language Workshop, San Mateo, CA: Morgan
Kaufmann Publishers (1990), pp. 170-172.

9. N. J. Nilsson, Problem-Solving Methods of Artificial Intelligence, New York City, NY:
McGraw-Hill (1971), pp. 57-65.

10. B. T. Lowerre. "The HARPY speech recognition system," Ph.D. Thesis, Computer Science
Department, Carnegie Mellon University (April 1976).

11. D. E. Knuth, The Art of Computer Programming: Sorting and Searching, Vol. 3, Menlow
Park, CA: Addison-Wesley (1973), pp. 145-147.

12. J. K. Baker, personal communication (June 1990).

13. L. R. Bahl and F. Jelinek, "Apparatus and method for determining a likely word sequence
from labels generated by an acoustic processor," U.S. Patent No. 4,748,670 (31 May 1988).

15

REFERENCES
(Continued)

14. D. B. Paul, "New results with the Lincoln tied-mixture HMM CSR system," Proc. Fourth
DARPA Speech and Natural Language Workshop, San Mateo, CA: Morgan Kaufmann Pub-
lishers (1991).

15. D. B. Paul, "The Lincoln tied-mixture HMM continuous speech recognizer," Int. Conf.
Acoust., Speech, and Signal Process. 1991, Toronto, Canada, May 14-17 (1991), pp. 329-332.

16. P. Price, W. Fisher, J. Bernstein, and D. Pallett, "The DARPA 1000-word resource man-
agement database for continuous speech recognition," Int. Conf. Acoust., Speech, and Signal
Process. 1988, New York City, NY, April 11-14 (1988), pp. 651-654.

17. D. B. Paul, "A CSR-NL interface specification," Proc. October 1989 DARPA Speech and
Natural Language Workshop, San Mateo, CA: Morgan Kaufmann Publishers (1989), pp. 203-
214.

18. F. K. Soong and E. F. Huang, "A tree-trellis fast search for finding the N best sentence
hypotheses in continuous speech recognition," Int. Conf. Acoust., Speech, and Signal Process.
1991, Toronto, Canada, May 14-17 (1991), pp. 705-708.

19. P. Kenny, R. Hollan, V. Gupta, M. Lennig, P. Mermelstein, and D. O'Shaughnessy, "A* -
admissible heuristics for rapid lexical access," Int. Conf. Acoust., Speech, and Signal Process.
1991, Toronto. Canada, May 14-17 (1991), pp. 689-692.

20. V. Zue, J. Glass, D. Goodine, H. Leung, M. Phillips. J. Polifroni, and S. Seneff, "Integration
of speech recognition and natural language processing in the MIT voyager system," Int. Conf.
Acoust., Speech, and Signal Process. 1991, Toronto, Canada, May 14-17 (1991), pp. 713-716.

21. S. Austin, R. Schwartz, and P. Placeway "The forward-backward search algorithm," Int. Conf.
Acoust., Speech, and Signal Process. 1991, Toronto, Canada May 14-17 (1991), pp. 697-700.

22. R. Schwartz and S. Austin, "A comparison of several approximate algorithms for finding
multiple (N-best) sentence hypotheses," Int. Conf. Acoust., Speech, and Signal Process. 1991,
Toronto, Canada, May 14-17 (1991), pp. 701-704.

23. V. Steinbiss, "Sentence-hypothesis generation in a continuous speech recognition system,"
EUROSPEECH 89, Paris, France (1989), pp. 51-54.

24. J. C. Spohrer, P. F. Brown, P. H. Hochschild, and J. K. Baker, "Partial backtrace in continuous
speech recognition," Proc. Int. Conf. on Systems, Man, and Cybernetics (1980), pp. 36-42.

16

Form ,4A om, d
REPORT DOCUMENTATION PAGE o No. 070"-o

& cn aro'01tiV &no r101sng "W $0158 t0o 0ilot0O11 o Seritt m 1m0 reg&WoV "0s buroe tbsMale OY Why ~ 0 IN$0 i 0 1 ws 1 3 Sugo5119 ,tors sisue s tos80019 a s 0~ , to WlsriWqOat

0100, 3ar w" Se5ces Owec1ate tot lftli'11atw Opa 0 arc 58r, .10 1215 JeSflson Dav ""
5

y Suste 1204 Ahnon VA 202-4302 a910 to We OR".5 of 8iaQwI wW 1 W d b I Pllwo.. Ws W P WC

407LI40185 WfI.1 DC 20503

1 AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
18 Jul',. 1991 Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

4An Efficient A* Stack Decoder .Algorithm for Continous
Speech Recognition with a Stochastic Language Model

C - F!9628-90-002
6. AUTHOR(S) PE - 62301E.61101E

PR - 337

Douglas B. Paul

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Lincoln Laboratory. MIT
P.O. Box 73 TR-930
Lexington. MA 02173-9108

9. SPONSORINGMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Defense A% anced Research Projects genc. 140 . ilson BI d. ESDTR91111
Arrington. %A 2220E

11. SUPPLEMENTARY NOTES

None

12a. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release. distribution is unlimited.

13 ABSTRACT (Maximum 200 words)

The stack decoder is an attractive algorithm for controlling the acoustic and language model matching in a
continuous speech recognizer. It implements a best-first tree search to find the best match to both the language
model and the olseried speech. A previous paper described a near-optimal admissible Viterbi As search algo-
rithm for use with non-cross-word acoustic models and n,>-grammar language models [I]. This report extends this
algorithm t, inchde unigram language models and describes a modified version of the algorithm which includes

the full (forward i decoder, cross-word acoustic models and longer-span language models. The resultant algorithm
is not admissible, but has been demonstrated to be very efficient.

14. SUBJECT TERMS 15. NUMBER OF PAGES
sta,'k decoder A* search 24
speech recognition hidden Marko% models JIMMNI 16. PRICE CODE
continuous speech recognition language modeling

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

t nclasoified I ncla.-ified I nclassified SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Prescribed by AMSI Std. 239-18
298-102

